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Objective

Performance Tuning for MILP, convex MIQP has some well 

established concepts that work effectively

Spatial B&B algorithm has some fundamental differences 

that create different performance tuning challenges

Construct a set of performance tuning tactics for nonconvex

(MI)QP for spatial B&B algorithm

 Distinguish tactics that extend from MILP and convex 

MIQP cases from  those that don’t

 Consider tactics specific to nonconvex (MI)QP
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Outline

Nonconvex (MI)QP fundamentals

Very brief review of MILP/convex MIQP tuning tactics

Parameters to set (or leave alone)

 Parameters that extend from MILP/convex MIQP

 Parameters that don’t extend well

 Parameters specific to nonconvex (MI)QP

Nonconvex (MI)QP model categories

Examples

Conclusions
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Problem definition

S=ᴓ:   nonconvex QP; otherwise nonconvex MIQP

Either way, we’ll solve it by branching, but presence of 

integer variables may affect tuning tactics
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Nonconvex (MI)QP fundamentals
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Root; 
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Integer y=0.6
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Upper Bound
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Branch and Bound for MILP

Fathomed

Branch and Bound for MIP

 Child node objective no better 

than parent node objective

 Nodes created by branching 

cumulatively contain all 

feasible solutions.
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v = 3.5

x=2.3

Integer y=0.6

z=0.3

Lower Bound

Integer

Upper Bound

Infeas

z=0.1

G
A
P

Branch and Bound for Nonconvex problems

Fathomed

(Convex relaxation)

(branch on violated 
non- convexity*)

(node satisfies 
non-convexity 
requirement)

 Child node objective no better 

than parent node objective

 Nodes created by branching 

cumulatively contain all 

feasible solutions.
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y

x

𝑦 ≤ 𝑥2

(𝑙, 𝑙2)

(𝑢, 𝑢2)

𝑠𝑙𝑜𝑝𝑒 =
𝑢2−𝑙2

𝑢−𝑙
= 𝑢 + 𝑙

𝑦 = 𝑙2 + 𝑢 + 𝑙 𝑥 − 𝑙
= 𝑙 + 𝑢 𝑥 − 𝑙𝑢

Secant approximation

𝑦 <= 𝑙 + 𝑢 𝑥 − 𝑙𝑢

 Finite bounds essential

 Tighter bound better
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McCormick relaxation (algebraic interpretation)

𝑥1𝑥2
𝑥1 ∈ [𝑙1, 𝑢1], 𝑥2 ∈ [𝑙2, 𝑢2]

(𝑥1 − 𝑙1) 𝑥2 − 𝑙2 = 𝑥1𝑥2 − 𝑙1𝑥2 − 𝑙2𝑥1 + 𝑙1𝑙2 ≥0
→ 𝑥1𝑥2 ≥ 𝑙1𝑥2 + 𝑙2𝑥1 − 𝑙1𝑙2
(𝑢1−𝑥1) (𝑢2−𝑥2)= 𝑥1𝑥2 − 𝑢1𝑥2 − 𝑢2𝑥1 + 𝑢1𝑢2 ≥0
→ 𝑥1𝑥2 ≥ 𝑢1𝑥2 + 𝑢2𝑥1 − 𝑢1𝑢2

→ 𝑥1𝑥2 ≥ max(𝑙1𝑥2 + 𝑙2𝑥1 − 𝑙1𝑙2, 𝑢1𝑥2 + 𝑢2𝑥1 − 𝑢1𝑢2)

(𝑥1 − 𝑙1) (𝑢2−𝑥2) = 𝑢2𝑥1 + 𝑙1𝑥2 − 𝑙1𝑢2 − 𝑥1𝑥2 ≥0
→ 𝑥1𝑥2 ≤ 𝑢2𝑥1 + 𝑙1𝑥2 − 𝑙1𝑢2

(𝑢1−𝑥1) 𝑥2 − 𝑙2 = 𝑢1𝑥2 + 𝑙2𝑥1 − 𝑢1𝑙2 − 𝑥1𝑥2 ≥0
→ 𝑥1𝑥2 ≤ 𝑢1𝑥2 + 𝑙2𝑥1 − 𝑢1𝑙2

→ 𝑥1𝑥2 ≤ min(𝑢2𝑥1 + 𝑙1𝑥2 − 𝑙1𝑢2, 𝑢1𝑥2 + 𝑙2𝑥1 − 𝑢1𝑙2)

Source: https://optimization.mccormick.northwestern.edu/index.php/McCormick_envelopes

≥ 0 ≥ 0
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McCormick relaxation (geometric interpretation)

(u1, u2, u1*u2)

(u1, l2, u1*l2)

(l1, l2, l1*l2,))

(l1, u2, l1*u2 )
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McCormick relaxation (geometric interpretation) 

Source:

(u1, u2, u1*u2)

)

(u1, l2, u1*l2)

(l1, l2, l1*l2,))

(l1, u2, l1*u2 )
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Nonconvex (MI)QP fundamentals

 We’ve defined some relaxation methods, but how do we use 

them, and how do we branch?


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



(Secant Approximation)

(McCormick Relaxation)

(Regular branching on IRs)

Do only for 

nonconvex parts 

of Q
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Nonconvex (MI)QP fundamentals
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Review of MILP/Convex MIQP Tuning Tactics
 MILP

 Examine node log for source(s) of performance problems

 Is lack of progress in best integer, best node or both?

 Choose parameters  based on source(s) of problems

 Additional insights obtained by looking at model to either 

select parameters or tighten the formulation

Convex MIQP

 Similar to MILP, with a few exceptions and additions

 Node relaxations need not have vertex solutions, 

potentially rendering some cuts ineffective

 Solve models with alternate objectives to find good 

starting solutions

 Linear term only, linear approximation to quadratic 

objective, simpler quadratic objective
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Nonconvex (MI)QP Tuning Tactics

 Distinguish among 3 Different Problem Types

 All quadratic objective terms have at ≥ 1 integer variable

 Can linearize the objective

 CPLEX does so if at least one variable is binary

 Otherwise can express general integer as linear combination 

of binaries

 Can instead convexify the objective if all QP objective terms 

have pairs of binaries

 MILP or convex MIQP instead of nonconvex MIQP

 No spatial branching needed

 But problem size is larger and/or more relaxed

 Standard MILP performance tuning tactics apply

 But certain parameters may be more or less effective for the 

linearization constraints
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Nonconvex (MI)QP Tuning Tactics

 3 Different Problem Types (ctd.)

 Nonconvex QP, all continuous variables

 Spatial branching only

 Parameters that exploit integrality to improve 

performance will be ineffective

Probing, cuts, most heuristics (e.g. RINS, feasibility 

pump)

Concepts need to be extended from integrality 

restrictions to more general non-convexity restrictions

Parameters that tighten bounds more likely to help

Bound strengthening already aggressive

Can force node presolve on (but node probing won’t 

help)

Try to provide tightest bounds possible 
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Nonconvex (MI)QP Tuning Tactics

 3 Different Problem Types (ctd.)

 Nonconvex MIQP that can’t be completely linearized or 

convexified

 Spatial branching and IR branching

Tactics depend on whether spatial or IR branching 

makes the model challenging

 Consider related problems with same constraints but 

quadratic objective that only requires spatial or only requires 

IR branching

 Parameters that exploit integrality to improve 

performance may help 

Probing and heuristics

Most cuts

 But not those that rely on simplex tableaus (e.g. Gomory)
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Nonconvex (MI)QP Specific Parameters

 Problem type control

 Qtolin parameter

 Controls whether CPLEX linearizes bilinear terms with 

at least one binary variable

Tradeoff between easier MILP problem type and size of 

problem

 Qpmakepsd parameter

 Controls whether CPLEX convexifies the objective

 Obtain convex MIQP without increase in problem size

 But tends to yield weaker relaxation than linearization

 CPLEX default performance improved by moving from 

convexification to linearization
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Nonconvex (MI)QP Specific Parameters

Qtolin parameter:

Let x1*x2 = z12

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2   

x1,x2,z12 binary

This linearization transforms the nonconvex MIQP into an 

MILP
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Nonconvex (MI)QP Specific Parameters

Qpmakepsd parameter to convexify quadratic objective involving pairs of 

binaries:

Min x1*x2 + x2*x3

x1*x2 + x2*x3 = x1*x2 + x2*x3 

+ d1(x12 – x1) + d2(x22 – x2)+ d3(x32 –x3) 

= (d1x12 + d2x22 + d3x32 + x1*x2 + x2*x3)   

– d1x1 – d2x2 – d3x3

 Can increase d1, d2, d3 to make quadratic terms convex

 The bigger the increase, the weaker the relaxation

 Fast heuristic to calculate good choices for d1, d2, 

d3

 Change nonconvex MIQP into convex MIQP
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Nonconvex (MI)QP Specific Parameters

 Cuts specific to nonconvex (MI)QP

 BQP (Boolean Quadric Polytope) cuts

 Aggressive settings more likely to be effective when 

number of linear constraints is modest

 RLT  (Relaxation Linearization Technique) cuts

 More likely to be effective with more linear constraints

 Either disable or use more aggressively

 Tradeoff between improved progress in best node 

value, slower node throughput due to larger size of node 

relaxations
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Transform arbitrary QP to Box QP
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Box QP

 Box-QP is interesting in itself:

 Bounds 0 and 1 are w.l.o.g. (every box QP can be scaled to those bounds)

 Still NP-hard

 Has some academic interest [Vandenbussche and Nemhauser, 2005, Burer and 

Vandenbussche, 2009, Chen and Burer, 2012]

 Also some applications [Moré and Toraldo, 1989] (usually huge size)

 Assuming finite bounds on 𝑥, (box-QP) is a valid relaxation for every non-convex 

(MI)QP (but additional linear constraints are removed in the relaxation process)

min
1

2
𝑥𝑇 𝑄 𝑥 + 𝑐𝑇 𝑥

𝑠. 𝑡.

0 ≤ 𝑥 ≤ 1

(box-QP)
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Proposition [Burer and Letchford, 2009]

Let 𝑌𝑄 be the set where variables 𝑦 represent the products in 𝑄 (excluding 

diagonal terms 𝑄𝑖𝑖):

We then have:

Corollary 

 BQP is the Boolean Quadratic Polytope [Padberg, 1989].

 BQP gives a valid relaxation of box-QP (but tends to be weaker as number 

of linear constraints in original QP increases). 

Every valid cut for BQP is valid for the box-QP.

BQP ∶= conv 𝑥, 𝑌 ∈ 𝑌𝑄 ∶ 𝑥 ∈ {0, 1}𝑛 = conv 𝑥, 𝑌 ∈ 𝑌𝑄 ∶ 𝑥 ∈ 0, 1 𝑛

Box QP and Boolean Quadratic Optimization

𝐸 = 𝑖, 𝑗 : 𝑖 ≠ 𝑗 and 𝑞𝑖𝑗 ≠ 0 ,

𝑌𝑄 = 𝑥, 𝑌 : 𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗 ∀ (𝑖, 𝑗) ∈ 𝐸 .
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BQP cuts for non-convex (MI)QPs 

[joint project with IBM Research (Gϋnlϋk and Linderoth)]

 BQP can be rewritten as 

 CPLEX has a lot of technology available to optimize over BQP

 In particular, the 0 – 1/2 Chvátal-Gomory cut separator finds strong cutting planes for 

BQP

 When used in the context of a non-convex MIQP, we call these BQP-cuts

 By scaling and shifting, separation can always be reduced to the 0 – 1 case

 After branching, rescaling using tighter local bounds leads to tighter local cuts.

 BQP arise from Box-QP but can be used to strengthen any non-convex (MI)QP

BQP ∶= conv

𝑦𝑖𝑗 ≤ 𝑥𝑖 , 𝑦𝑖𝑗≤ 𝑥𝑗 , 𝑦𝑖𝑗≥ 𝑥𝑖 + 𝑥𝑗 − 1, ∀(𝑖, 𝑗) ∈ 𝐸

( 𝑥, 𝑌 ∈ {0, 1}𝑛+|𝐸| : 

)
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RLT cuts for non-convex (MI)QPs 

 Details 

 A Reformulation-Linearization Technique for Solving Discrete 

and Continuous Nonconvex Problems by Hanif D. Sherali and W. 

P. Adams, Springer 1999

 Key idea:  Multiply a linear constraint (ax-b) by individual (𝑥𝑗 − 𝑙𝑗) 

values, then use McCormick inequalities in bilinear terms, update the 

lower and upper bounds in the linear expressions as they get tighter 

during the tree search to create locally valid cuts

𝑥1𝑥2 ≥ max(𝑙1𝑥2 + 𝑙2𝑥1 − 𝑙1𝑙2, 𝑢1𝑥2 + 𝑢2𝑥1 − 𝑢1𝑢2)

𝑥1𝑥2 ≤ min(𝑢2𝑥1 + 𝑙1𝑥2 − 𝑙1𝑢2, 𝑢1𝑥2 + 𝑙2𝑥1 − 𝑢1𝑙2)

 More likely to be effective on models with more constraints
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Nonconvex (MI)QP General Parameters

 Parameters that can help regardless of the category of 

nonconvex (MI)QP

 Improve node throughput

Start/Subalgorithm parameters to chose node relaxation 

algorithm

 Parameters that only apply when integer branching is 

present

 Variable selection parameter

 Probing

 MIP starts not currently supported

 Difficult mapping from original to transformed model
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Example 1

 Nonconvex QP with all binaries and cardinality constraints:
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Example 1

 Nonconvex QP with all binaries and cardinality constraints

To linearize or not to linearize?
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Example 1

 Nonconvex QP with all binaries and cardinality constraints

To linearize or not to linearize?

Node log with qtolin parameter turned off:

Nodes                                                  Cuts/

Node  Left     Objective IInf Best Integer    Best Bound    ItCnt Gap

0     0   -7.12168e+08   109                -7.12168e+08    31         

*     0+    0                         6204.9094   -7.12168e+08            ---

*     0+    0                         4967.7765   -7.12168e+08            ---

0     2   -7.12168e+08   109   4967.7765   -7.12168e+08   31        ---

...

7901  5570  -6.94050e+08     0     1403.6893  -7.12137e+08   101618     ---

7902  5571  -6.87463e+08     6     1403.6893  -7.12137e+08   101623     ---

Elapsed time = 712.68 sec. (540121.82 ticks, tree = 2402.25 MB, solutions = 267)

Nodefile size = 204.31 MB

7942  5593    infeasible           1403.6893  -7.12137e+08   102200     ---

7950  5597  -6.87455e+08     3    1403.6893  -7.12137e+08   102377     ---



© 2015 IBM Corporation30

Example 1

 Nonconvex QP with all binaries and cardinality constraints

To linearize or not to linearize?

Node log with qtolin parameter left on at default:

Nodes                                                     Cuts/

Node  Left     Objective  IInf Best Integer    Best Bound    ItCnt Gap

*     0+    0                                    494.8192        0.0000           100.00%

*     0+    0                                    131.3468        0.0000          100.00%

0          0        0.0000    70      131.3468        0.0000      233  100.00%

...

18233 12810       7.7423      178       17.0050        0.0000  2079862 100.00%

18235 12812       1.7563      141       17.0050        0.0000  2080171 100.00%

Elapsed time = 6154.42 sec. (1368022.84 ticks, tree = 930.16 MB, solutions = 13)

* 18530+13096                           16.5953        0.0000           100.00%

* 18540+13106                           16.3024        0.0000           100.00%



© 2015 IBM Corporation31

Example 1

 Nonconvex QP with all binaries and cardinality constraints

 Node log based performance tuning

 Linearization to MILP better

 Progress in the best node may be challenging with 

parameter settings

Cuts and probing may not address the weakness of the 

formulation involving the linearization variables

 Model only has cardinality and linearization constraints

 Zero half cuts might help

 Branching up more powerful when number of variables 

dramatically exceeds rhs values of cardinality constraints

Branching down more powerful in the reverse case

 Model well suited to local search/local improvement 

heuristics
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Example 1
 Nonconvex QP with all binaries and cardinality constraints

Well suited to local search

local improvement:
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Example 1

 Nonconvex QP with all binaries and cardinality constraints

Node log branch up, RINS frequency 200, solution polishing 

after 30 minutes:

Nodes                                                     Cuts/

Node  Left     Objective  IInf Best Integer    Best Bound    ItCnt Gap

…
60    14       11.7385   251       11.9074       0.0000    16170    100.00%

70             14       11.7879   226       11.9074        0.0000        16292    100.00%

Elapsed time = 545.57 sec. (114453.69 ticks, tree = 0.53 MB, solutions = 6)

79             13        cutoff             11.9074               0.0000        16407    100.00%

84             14        1.7133   173       11.9074        0.0000        16697    100.00%

…
1708          124        cutoff              9.0886               0.0000      135562    100.00%

Elapsed time = 1696.83 sec. (240881.08 ticks, tree = 95.36 MB, solutions = 10)

1760   127        0.0008   551         9.0886               0.0000      142195    100.00%

…

*  1782+  118                                         6.8981               0.0000                      100.00%

1782   120        0.3247   115          6.8981              0.0000   159376     100.00%

1783   119        0.2436   560          6.8981              0.0000      159183     100.00%

Elapsed time = 4391.19 sec. (770332.08 ticks, tree = 166.33 MB, solutions = 38)
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Example 2

 Nonconvex QP with all continuous variables

 Default settings:
Nodes                                         Cuts/

Node  Left     Objective  IInf Best Integer    Best Bound    ItCnt Gap

*     0+    0                            0.3931         -7668.0051 ---

0     0      -153.3420     0        0.3931     -153.3420        9     ---

*     0+    0                                     -6.3860     -153.3420              ---

0     0           -9.5378     0       -6.3860       RLT: 50     1856       49.35%

…

Elapsed time = 46.85 sec. (22852.38 ticks, tree = 125.39 MB, solutions = 632)

7817  5294       -6.4361     0       -6.3860       -9.0699  1546050   42.03%

…

10113  6704     -6.8908     0       -6.3860       -9.0699 2081962   42.03%

Elapsed time = 67.55 sec. (32405.73 ticks, tree = 170.23 MB, solutions = 837)

10352  6877      -6.5928     0       -6.3860       -7.7057  2145588   20.67%

…

99292  4408        cutoff             -6.3860       -6.4377 22808661    0.81%

103430   703        cutoff             -6.3860       -6.4002 22946508 0.22%

…

MIP - Integer optimal, tolerance (0.0001/1e-06):  Objective = -6.3860149815e+00

Current MIP best bound = -6.3866525512e+00 (gap = 0.00063757, 0.01%)

Solution time =  802.48 sec.  Iterations = 22955491  Nodes = 

104187 (44)

Slow 

progress in 

best node

Try alternate 

QP rel. 

algorithms
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Example 2

 Nonconvex QP with all continuous variables

 Bqp cut parameter set to most aggressive setting of 3:

Nodes                                                        Cuts/

Node  Left     Objective  IInf Best Integer    Best Bound    ItCnt Gap

*     0+    0                            0.3931        -7668.0051              ---

0     0        -153.3420     0        0.3931     -153.3420       9          ---

*     0+    0                           -6.3860     -153.3420              ---

0     0           -9.5378     0       -6.3860       RLT: 50     1856     49.35%

…

11809  1344        cutoff             -6.3860       -6.5202  4888403    2.10%

Elapsed time = 168.14 sec. (80678.33 ticks, tree = 21.89 MB, solutions = 633)

12164  1069        cutoff             -6.3860       -6.4920  4948613    1.66%

12616    778        cutoff             -6.3860       -6.4664  4999328    1.26%

13413    185        cutoff             -6.3860       -6.4096  5056713    0.37%

…

MIP - Integer optimal, tolerance (0.0001/1e-06):  Objective = -6.3860149815e+00

Current MIP best bound = -6.3866035011e+00 (gap = 0.00058852, 0.01%)

Solution time =  174.66 sec.  Iterations = 5063193  Nodes = 

13690 (11)
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Tightening the formulation

What happens when adjusting parameters is insufficient?

Examine model, figure out how to tighten the formulation

Start with non-convex MIQPs that linearize to MILPs, since 

we can draw on knowledge from the easier MILP case

• Simplify the model if necessary
• Remove any constraints and integrality restrictions not involved in the 

performance trouble

• Try to reproduce the trouble in a smaller data instance

• Find out how relaxing integrality allows you to cheat
• How do fractional solutions in the node relaxations allow the 

objective to improve?

• In terms of the physical system being modelled, does relaxing 

integrality introduce valuable new processes at little nor no cost than 

are unavailable in the MILP version of the model?

• Use fractional solutions to identify the constraints and 

variables that will motivate additional cuts
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Example: A nonconvex MIQP with a cardinality 

constraint

Model description:

binaryx

kxtoSubject

xxdMaximize

j

n

j

j

ji

n

ji
i

ij

n

j

  

1

11

       














>0

Source:  Klotz, Newman.  Practical Guidelines for Solving Difficult 

Mixed Integer Linear Programs
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Example: A nonconvex MIQP with a cardinality 

constraint

Nodes                                  Cuts/

Node   Left Objective IInf  Best Integer  Best Node  ItCnt Gap

0        0    13.0405    28                    13.0405     29         

*0+       0                0       5.0000       13.0405     29  160.81%

*0+       0                0       5.6250       13.0405     29  131.83%

100 82    11.7307    25       5.6250       11.7307    129  108.55%             

…

2222400 329     5.6256     5       5.6250        5.6256 2371768   0.01%

MIP - Integer optimal, tolerance (0.0001/1e-06):  

Objective =  5.6250000000e+00

Solution time =  408.94 sec.

Node Log with n = 28, k = 10:
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Example: A nonconvex MIQP with a cardinality 

constraint

Review the guidelines and tactics

Simplify the model if necessary

Determine how fractional solutions affect objective

Use fractional solutions to motivate additional cuts

 Linear or logical combinations of constraints

Disjunctions

Solve one or more related models

Use infeasibility

Use solution objective value
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Determine how fractional solutions affect objective

Simplify the model if necessary

max 3x1*x2 + 4x1*x3 + 5x2*x3

subject to

x1 + x2 + x3 <= 2

x1, x2, x3 binary

MIQP optimal solution: x2 = x3 = 1; obj = 5

QP optimal solution: x1 = x2 = x3 = 2/3; obj = 16/3

We cannot tighten this formulation with linear

constraints since the integer solutions are extreme 

points of the relaxation polyhedron

Extreme point

Non-vertex, fractional

Example: A nonconvex MIQP with a cardinality 

constraint
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Example 3: A nonconvex MIQP

Solve one or more related models

Let x1*x2 = z12

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2   

z12 binary

This linearization transforms the nonconvex MIQP into an 

MIP
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Nodes                        Cuts/

Node  Left   Objective IInf Best Integer  Best Node ItCnt Gap

0      0      12.8720  402                 12.8720    617         

*0+     0                 0     -0.0000     12.8720    617  ---

*0+     0                 0      0.1250     12.8720    617  ---

…

*85    74                 0      5.0417     11.8962   2345 135.96%

…

137900 23      cutoff            5.6250      5.6333  2707056 0.15%

MIP - Integer optimal solution:  Objective =  5.6250000000e+00

Solution time =  251.66 sec.  Iterations = 2707079  Nodes = 137923

Node log with n=28, k=10 for the  linearized problem:

Example 3: A nonconvex MIQP



© 2015 IBM Corporation43

Determine how fractional solutions affect objective

max 3z12 + 4z13 + 5z23       subject to

x1 + x2 + x3 <= 2

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2  

z13 <= x1

z13 <= x3

z13 + 1 >= x1 + x3   

z23 <= x2

z23 <= x3

z23 + 1 >= x2 + x3  

All variables binary

MIP optimal: z23 = x2 = x3 = 1, obj = 5.  

LP optimal: all variables = 2/3, obj = 8

zij = 1 xi  = xj = 1 (true for MIP, LP) 

zij < 1 xi = 0 or xj = 0  (true for MIP)  

Example 3: A nonconvex MIQP
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Example 3: A nonconvex MIQP

Use Infeasibility

max 3z12 + 4z13 + 5z23       subject to

x1 + x2 + x3 <= 2

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2  

z13 <= x1

z13 <= x3

z13 + 1 >= x1 + x3   

z23 <= x2

z23 <= x3

z23 + 1 >= x2 + x3  

All variables binary

z23 = z12 = 1   x1 + x2 + x3 = 3

 z12 + z13 + z23 <= 1  (cuts off z12 = z13 = z23 = 2/3 in LP)

zij = 1 xi  = xj = 1 
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Example 3: A nonconvex MIQP

Extend result to general model with arbitrary n, k:

x1 …                    xk x(k+1) … xn

x1

xk

x(k+1)

xn

zij = 1 xi  = xj = 1 

Z =

zij 

zji 
= 1 

= 0 

Count the number of 

blue elements below 

the diagonal:  k*(k-1)/2

z1k

zk1
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binaryzx

kkz

zxx

xz

xz

kxtoSubject

zdMaximize

ijj

n

ji
i

ij

n

j

ijji

iij

jij

n

j

j

ij

n

ji
i

ij

n

j

  ,

11

1

11

       

2/)1(*               

1                    

0                    

0                    































Tightened linearized model:

Cut

Example: A nonconvex MIQP with a cardinality 

constraint
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Node log with n=28, k=10 for the linearized problem with cut:

Nodes                                 Cuts/

Node  Left  Objective IInf Best Integer   Best Node  ItCnt   Gap

0      0     6.4792  110                  6.4792     312         

*0+     0               0     -0.0000      6.4792     312    ---

…

*50+   19               0      5.5000      6.0833    2277  10.61%

…

300   20     cutoff           5.6250      5.6919    9882   1.19%

…

MIP - Integer optimal solution:  Objective =  5.6250000000e+00

Solution time =    2.89 sec.  Iterations = 10154  Nodes = 330

Example 3: A nonconvex MIQP
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Example: A nonconvex MIQP with a cardinality 

constraint

 Treated the linearized MIQP is a generic MILP

 Drew on well established MILP guidelines to 

tighten the formulation

 Linearization constraints were involved

 Can we do this more efficiently by looking at the 

generic underlying structure when linearization 

of products of binary variables  are involved?
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Useful graph structure present in all linearized 

nonconvex MIQP with bilinear terms of binaries

Let x1*x2 = z12

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2   

z12 binary x1 x2
z12

 Associate nodes with binary variables in the problem, 

draw edges for every pair of binaries that have a nonzero 

quadratic objective coefficient (and hence are linearized)

)relaxation  LPlinearized  thein feasible 0,5.( 1221  zxx
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Useful graph structure present in all linearized 

nonconvex MIQP with bilinear terms of binaries

Let x1*x2 = z12

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2   

z12 binary

x1 x2
z12

 Padberg examined this graph in detail in his 1989 paper 

THE BOOLEAN QUADRIC POLYTOPE: SOME 

CHARACTERISTICS, FACETS AND RELATIVES

 Examined the polytope associated with the LP 

relaxation of the linearized Binary QP

 For a Binary QP with one bilinear term, its vertices 

and facets are the same as those of its relaxation
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Useful graph structure present in all linearized 

nonconvex MIQP with bilinear terms of binaries

x2 x3
z23

 However, for a Binary QP with 3 binaries and 3 linearized 

bilinear terms, Padberg derived some facet defining 

inequalities that cut off fractional solutions in the 

relaxation

x1

z12
z13

(14)                  0)(

(13)                  0)(

(12)                  0)(

(11)     1)(

1232313

1322312

2311312

231312321









zxzz

zxzz

zxzz

zzzxxx
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Useful graph structure present in all linearized 

nonconvex MIQP with bilinear terms of binaries

 Straightforward to prove these cuts are globally valid:

 Analogous approach to prove the validity of (12)-(14)

 Inductive approach to extend cut (11) above from cliques of 

size 3 to cliques of arbitrary size

 But the cut may weaken as the clique size grows

33

12

0  variablesall since 2 Then

2)(  Suppose

1)(

231312321

231312321

321

231312321

231312321











zzzxxx

zzzxxx

xxx

zzzxxx

zzzxxx Let x1*x2 = z12

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2   

z12 binary
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Implications of Padberg’s graph for linearized 

nonconvex MIQPs containing bilinear terms of binaries

 Create the graph with nodes corresponding to binaries, edges 

corresponding to z variables associated with the linearization of 

bilinear terms of binaries

 Find the cliques in the graph

 Generate cuts from the cliques

 Can also create similar graphs from 

constraints involving variables associated

with linearizations, use those to generate

additional cuts
Let x1*x2 = z12

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2   

z12 binary
x3

z23
x2

z12 z13

x1
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Example: Minimizing overlap conditions
= 1

= 1

= 1

= 1

= 1

= 1

Overlap conditions:  For a given column j in the grid, define an 

overlap variable for any two rows i1 < i2 such that the overlap 

variable is 1 if both x(i1,j) and x(i2,j) = 1:

z(i1,i2,j) + 1 >= x(i1,j) + x(i2,j)

6 binaries must be 1  at least one column has 2 or more 

binaries set to 1 in any feasible solution  at least one 

overlap variable z(i1,i2,j) must be 1.   Pretty easy for 

humans familiar with the pigeonhole principle to see 

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

x61 x62 x63 x64 x65
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Example: Modeling overlap conditions

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

x61 x62 x63 x64 x65

= 1

= 1

= 1

= 1

= 1

= 1

Surely CPLEX’s numerous 

cut generators will pick this 

up…

 Not a rank-1 Chvatal Gomory cut

 LP feasible solutions with all overlap 

variable set to 0

 Not a rank-1 Lift and Project Cut

 Optimize small instance over L&P closure

 Probably not a rank-1 Split Cut

 Optimize small instance over Split closure
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Example: Minimizing overlap conditions

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

= 1

= 1

= 1

= 1

= 1

= 1

z(i1,i2,j) + 1 >= x(i1,j) + x(i2,j)->z(*,*,j) = 0

The Padberg Graph consists of 5 complete graphs with 6 

vertices each (corresponding to the binaries in one column 

of the grid), and edges associated with the overlap 

variables.

Cheating by relaxing integrality:
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Example: Minimizing overlap conditions

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

x61 x62 x63 x64 x65

= 1

= 1

= 1

= 1

= 1

= 1

Padberg graph, column 1:

x11

x21

x31

x41

x51

x61

z121

z231

z341

z451

z561

z361

z…

z…

z…

     1
6

1

6

1

1

612111  
 i ik

ikzxxx 

Padberg cut, column 1:

All node variables All edge variables
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Example: Minimizing overlap conditions

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

x61 x62 x63 x64 x65

= 1

= 1

= 1

= 1

= 1

= 1

Padberg cut, column 1:

Padberg cut, column 2:

Padberg cut, column 5:

     56
5

1

6

1

6

1


  j i ik

j

ikz

(aggregate)

(rearrange)

     1
6

1

6

1

1

612111  
 i ik

ikzxxx 

     1
6

1

6

1

2

622212  
 i ik

ikzxxx 

     1
6

1

6

1

3

632313  
 i ik

ikzxxx 

     1
6

1

6

1

4

642414  
 i ik

ikzxxx 

     1
6

1

6

1

5

652515  
 i ik

ikzxxx 

     1
5

1

6

1

6

1


  j i ik

j

ikz

(at least one z variable must be 1)
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Results for Overlap models

 5 overlap models, each with 10 grids of varying sizes and 

aspect ratios

 CPLEX versions before 12.7 failed to solve any model to 

optimality within 2 hours

 Padberg cuts improved performance, but don’t seem to scale 

up particularly well

 But were very easy to generate from the Padberg graph

Model

CPLEX 12.8

Defaults, 12 

threads

Padberg cuts added 

to model

10grids 6.62 3.47

10grids_a 3.42 1.03

10grids_b 11.14 7.32

10grids_c Timeout (2.65%) Timeout (2.65%)

10grids_big Timeout (96.93%) Timeout (38.83%)

(excluding aggregated cut)



© 2015 IBM Corporation60

 Padberg graph can derive stronger cuts than aggregating 

individual Padberg cuts

 Consider a grid with a smaller aspect ratio:

 How many z variables must be 1?

 Fewest occurs when grid

elements set to 1 are

as evenly distributed as

possible

 Aggregate 4 Padberg cuts:

 Use Padberg

graph on all 4 

columns:

Example: Minimizing overlap conditions

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x51 x52 x53 x54

x61 x62 x63 x64

x71 x72 x73 x74

x81 x82 x83 x84

x91 x92 x93 x94

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1     6
4

1

9

1

9

1


  j i ik

j

ikz

     5
4

1

9

1

9

1


  j i ik

j

ikz
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x14

x34
x84

x24

x44

x54
x64

x74

x94

Columns j = 1,2,3 Column 4

x1j

x2j

x3j

x4j

x5j
x6j

x7j

x8j

x9j
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Results for Overlap models

 5 overlap models, each with 10 grids of varying sizes and 

aspect ratios

 CPLEX versions before 12.7 failed to solve any model to 

optimality within 2 hours

 Overlap cuts stronger than Padberg cuts

 But Padberg graph made them easier to find

 Effectiveness significant, but diminishes as grid size grows

Model

CPLEX 12.8 

defaults, 12 

threads Both

Overlap 

only Padberg only

10grids 6.62 0.54 0.7 3.47

10grids_a 3.42 0.3 0.29 1.03

10grids_b 11.14 2.67 1.57 7.32

10grids_c timeout (2.65%) 2.09 1.39 timeout(2.65%)

10grids_big timeout(96.93%) timeout (2.72%) 4188.89 timeout(38.83%)
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Example: Nonconvex MIQP with cardinality constraint

 Back to another model with cardinality constraint:

 Padberg graph is the complete

graph with n vertices

 Could generate Padberg

cuts from cliques of size

3,4,5,…,n

 Experiments indicate 

Padberg cuts don’t help.

 Instead, use Padberg graph

and the cardinality constraint… 
binaryx

kxtoSubject

xxdMaximize

j

n

j

j

ji

n

ji
i

ij

n

j

  

1

11

       














>0

Let xi*xj = zij

zij <= xi

zij <= xj

zij + 1 >= xi + xj

zij binary
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Determine how fractional solutions affect objective

max 3z12 + 4z13 + 5z23       subject to

x1 + x2 + x3 <= 2

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2  

z13 <= x1

z13 <= x3

z13 + 1 >= x1 + x3   

z23 <= x2

z23 <= x3

z23 + 1 >= x2 + x3  

All variables binary

MIP optimal: z23 = x2 = x3 = 1, obj = 5.  

LP optimal: all variables = 2/3, z12 + z13 + z23 = 2, obj = 8

zij = 1 xi  = xj = 1 (true for MIP, LP) 

zij < 1 xi = 0 or xj = 0  (true for MIP, not for LP)  

Example: A nonconvex MIQP
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Example 3: A nonconvex MIQP

Use Infeasibility

max 3z12 + 4z13 + 5z23       subject to

x1 + x2 + x3 <= 2

z12 <= x1

z12 <= x2 

z12 + 1 >= x1 + x2  

z13 <= x1

z13 <= x3

z13 + 1 >= x1 + x3   

z23 <= x2

z23 <= x3

z23 + 1 >= x2 + x3  

All variables binary

z23 = z12 = 1   x1 + x2 + x3 = 3

 z12 + z13 + z23 <= 1  (cuts off z12 = z13 = z23 = 2/3 in LP)

zij = 1 xi  = xj = 1 
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Example: A nonconvex MIQP with a cardinality constraint

Padberg graph (complete graph, size n):

x1

x3

xk

x(n-1)

xn

x2





     

          

 How many zij variables can be set to 1?

 At most k x variables can be 1

 Look at any subgraph consisting of 

k nodes (complete graph, size k)

 Number of edges of subgraph = # 

of z variables that can be set to 1

 k*(k-1)/2 edges, hence sum of all z 

variables is at most k*(k-1)/2 

(dashed edges correspond to those 

in the original Padberg graph with n 

nodes but not in the subgraph of k 

nodes)
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binaryzx

kkz

zxx

xz

xz

kxtoSubject

zdMaximize

ijj

n

ji
i

ij

n

j

ijji

iij

jij

n

j

j

ij

n

ji
i

ij

n

j

  ,

11

1

11

       

2/)1(*               

1                    

0                    

0                    































Tightened linearized model:

Cut

Example: A nonconvex MIQP with a cardinality constraint
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 Computational results (maximization problems)

 All times in seconds, TO = 2 hour timeout

 Much better performance with cardinality cuts on all 6 

instances, but advantage diminishes as we scale up

 Still get superior gaps, bounds as we scale up

 Single (dense) cut slows node throughput

Example: A nonconvex MIQP with a cardinality constraint

Model 

(n,k) Time,Nodes
Initial, Final Upper 
bound

Final 
Gap Time,Nodes

Initial, Final
Upper bound Final Gap

28,10 21.7, 102k 750.7,* 0 0.7,1363 383.8,* 0

60,20 TO, 4656788 6245.3,3962.5 61.5% 458.8,17837 3224.4,* 0

100,7 TO, 1332669 3613, 1658 364.4% 49.8, 2054 410.11,* 0

150,30 TO, 214202 23537.6, 20458.78 284.4% TO, 18264 7920.2, 6952.7 25.1%

200,14 TO, 100369 14553.4, 11012.8 859.2% TO, 120866 1765.1, 1739.9 29.2%

280,100 TO, 14306 76541.4, 74982.1     158.2% TO, 6931 41597,1,40027.8 41.4%

CPLEX 12.8 defaults, 12 threads CPLEX 12.8 card. cuts, 12 threads



© 2015 IBM Corporation69

Extend to arbitrary MIQPs with products of binaries in the 

objective

 Construct Padberg graph for all products of binaries in 

the objective 

 May be disjoint collection of connected components

 Look for cardinality constraints involving only subset 

of binaries associated with nodes in the Padberg

graph

 Explicit or implicit constraints

 Generate one cut for each such cardinality constraint

 As branch and cut continues, at any node that has 

one or more binary in a cardinality constraint fixed to 

0, can generate a tighter locally valid cut

 Other speedups may exist as well
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Other examples

 QUBOs (QUadratic Binary Optimization)

 Our internal test set of such models have Padberg graphs 

with no cliques of size 3 or more

 Nothing to be done

 QUBOs from max clique reformulation

 Modest improvement in root bound, but unfavorable 

overall

 QUBO formulation significantly worse than direct 

formulation anyways (for branch and cut, not necessarily 

for other algorithms)

 What about QAP models?
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QAPs 

 Basic QAP of dimension n

 n^2 binary variables, 

2n constraints:

































2

22

1

  

1

0

1

11

                  

 ,...,1,                       

,...,1            1                  

1,...,0            1 

n

j

j

j

n

k

jkn

n

j

jkn

ji

n

j

ij

n

i

nx

njbinaryx

njx

nkxtoSubject

xxqMinimize

>0

(Variable grid column)

(Variable grid row)

Implied cardinality constraint

x1 x2 … xn-1 xn

xn+1 xn+2 … x2n-1 x2n

… … … … …

x(n 2)n+1 … … … x(n-1)n+1

x(n-1)n+1 … … … xn^2

=1

=1

=1

=1

=1

=1 =1 =1 =1 =1
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Example: QAP of size n with dense off diagonals

Padberg graph (complete graph, size n^2):

x1

x3

Xkn+j

Xn^2 -1)

Xn^2 

x2





     

          
 First cardinality constraints to consider

 x1 + … + xn = 1

 Cardinality cut, k = 1:

 ,...,1,1,...,0                                       

,...,1,  0     

               

njnk

njrjknizir





x1 x2 … xn-1 xn

xn+1 xn+2 … x2n-1 x2n

… … … … …

x(n 2)n+1 … … … x(n-1)n+1

x(n-1)n+1 … … xn^2-1 xn^2

=1

=1

=1

=1

=1

=1 =1 =1 =1 =1
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Example: QAP of size n with dense off diagonals

Padberg graph (complete graph, size n^2):

xj1

Xn^2 -1)

Xn^2 





     

          

 Second cardinality constraints to 

consider

 x1 + … + xn^2 = n

 WLOG, any n variables that satisfy 

the grid constraints

 Cut: sum zij <= n*(n-1)/2
(dashed edges correspond to those 

in the original Padberg graph with 

n^2 nodes but not in the subgraph of 

n nodes)

xj2

xj3

xjn
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QAP models

 QAP models of dimension n

 Start with models with Q matrices with all off diagonal nonzeros

positive

 Padberg graph provides cardinality based cuts without any 

significant computational effort.

 CPLEX’s probing already picked off the low hanging fruit

 Cardinality constraints involving sums of binaries = 1

 Associated z variables must all be 0

 Cardinality constraint that sum of all assignment binaries must 

be n yields an additional cut on the sum of the remaining z 

variables.
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 Computational results (minimization problems)

 Cut gives much tighter root node bound

 Node throughput becomes a challenge

 Barrier at the nodes, turn off zero half cuts. 

QAPs with dense off diagonal Q matrices

Model 

(n) Time,Nodes
Initial, Final Lower 
bound Final Gap Time,Nodes

Initial, Final
Lower bound Final Gap

12 164.8, 10654 26735.1, * 0 11.4, 0 209653.4, * 0

15 3746.9,62265 6737.57,* 0 361.7,1072 558121.5,* 0

20 TO, 13389

156910.0,

349972.1 93.4% TO, 3967

2365485.4,

3391021.5 10.5%

25 TO, 3867

500553.5,

819447.3 94.9% TO, 795

7069139.9,

7654860.7 46.3%

CPLEX 12.8 defaults, 12 threads CPLEX 12.8 card. cuts, 12 threads
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Examples

 QAP models from QAPLIB

 Wide range, from mostly sparse Q matrix to 100% dense

 Cardinality cut computation time for sparse Q matrix can be  

quite significant

 Could have a feasible solution with 

all zero costs

Name n, n^2 Q nonzeros Q density

had12 12   144 17424 100%

rou12 12   144 17160 98.48

tai12a 12   144 16896 96.97%

nug12 12 144 11880 68.18%

scr12 12 144 7392 42.42%

chr12a 12 144 2860 15.38%

12*11*11 = 

n * (n-1)^2
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x1

x3

x8

x2

x4

x5
x6

x7

x9

Examples

 Cardinality cuts for sparse 

QAP models from QAPLIB

 Start small with dense 

QAP with n = 3, then 

systematically introduce 

sparsity.

 Padberg graph for dense 

QAP, n = 3

x1 x2 x3

x4 x5 x6

x7 x8 x9

=1

=1

=1

=1 =1 =1
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x1

x3

x8

x2

x4

x5
x6

x7

x9

At least 2 z variables must be 1

Red edges are a maximum 

matching

x1 x2 x3

x4 x5 x6

x7 x8 x9

=1

=1

=1

=1 =1 =1

Edge with zij = 0 due to 

constraint on xi and xj; 

thus qij = 0

Edge with qij = 0 

Edge with qij > 0 
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x1

x3

x8

x2

x4

x5
x6

x7

x9

At least 1 z variable must 

be 1

x1 x2 x3

x4 x5 x6

x7 x8 x9

=1

=1

=1

=1 =1 =1

Edge with zij = 0 due to 

constraint on xi and xj; 

thus qij = 0

Edge with qij = 0 

Edge with qij > 0 
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x1 x2 x3

x4 x5 x6

x7 x8 x9

=1

=1

=1

=1 =1 =1

 QAPs with sparse Q matrices

 Any node not adjacent to both 

nodes of at least one zero 

coeff. edge can be discarded 

 Green edge nodes are 

adjacent to both nodes 

 From the remaining subgraph, 

find the clique with the most red 

edges

 The # of edges in that 

clique provides an offset by 

which we reduce the rhs of 

the cardinality constraint 

derived for the dense QAP

x1

x3

x8

x2

x4

x5
x6

x7

x9
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x3

x8

x4

x5

x7

 QAPs with sparse Q matrices

 Rhs of dense cardinality 

constraint: 3*2/2 = 3

 Max # of red edges in any 

clique: 1

 At least 3 – 1 = 2 z variables 

must be 1
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 QAPs with sparse Q matrices

 Unfortunately, the subgraph may not 

be smaller than the original graph

 Nodes 1 – 8 must be retained 

since they are part of a red 

edge

 Node 9 is adjacent to nodes 2 

and 4

 The QAPLIB models have Padberg

graphs that allow few, if any, nodes 

to be discarded

 If we have to enumerate all the n-

cliques in the graph, that will provide 

the optimal solution to the original 

QAP (Junger & Kaibel, 1997)

x1

x8

x2

x4

x5
x6

x7

x9

x3
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 Computational results

 Dual bounds are not as good as others found in the literature 

(Junger & Kaibel, 1997)

 Adding cardinality cut degrades performance on 5 of 6 models

 Cut provides better lower bound, much smaller node count

 One (dense) cut dramatically slows node throughput

QAPLIB models of dimension 12

Model Density Time,Nodes
Initial Lower 
bound Time,Nodes

Initial Lower 
bound

had12 100% 24444.5, 12385907 0 26325.6, 408249 381.5

rou12 98.48 11295.8, 4185669 0 14030.1, 165636 14822.3

tai12a 96.97% 3876.7,   1527100 0 6703.0, 58048 6774.8

nug12 68.18% 3955.3, 2782290 0 624.7,   10155 134.7

scr12 42.42% 20.2,       20660 0 161.7,     8623 4633.0

chr12 15.38% 1.2,         4699 0 6.26, 1897 842.3

CPLEX 12.8 defaults, 12 threads CPLEX 12.8 card. cuts, 12 threads
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 We examined 3 different type of models

 Grid models with overlap to be minimized

 Choosing k of n points to maximize diversity

 For these two model types, we saw big speedups

 But speedups declined as model size scaled up

 Still got significant improvement in dual bound, MIP 

gap for the larger models

Cardinality cut derived from Padberg graph.
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 We examined 3 different type of models (ctd)

 Quadratic assignment problems (QAPs)

 Easy to generate the cut on dense QAPs

 Big speedups or gap improvements, but hard to solve 

to optimality as QAP dimension increases

 More challenges for QAPs with sparsity

 Better root dual bounds, much smaller node counts

 But time per node increased, need to speed up 

node LP solve times to get major speedups

 Cut generation time much more significant

 We may have just moved the heavy lifting 

elsewhere (finding n-cliques in the Padberg

graph) 

 Different sparsity patterns in Q may profoundly 

affect work to generate the cut.

Cardinality cut derived from Padberg graph.
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 DoCPLEX Python modeling layer in conjunction with Networkx

package for graph algorithms

 DoCPLEX is open source, included at no additional charge 

with versions 12.8 and later of CPLEX

 Networkx (https://networkx.github.io/) is also open source, 

available at no charge

 Numerous graph algorithms and tools beyond the clique 

calculations used here

 Cut validation

 Test validity of cuts by confirming adding the reverse of the 

cut makes the resulting model is infeasible

 If ax >= b is the cut, confirm that adding ax <= b – Δ to 

the original model is infeasible

 Feasopt may be much faster than mipopt to prove 

infeasibility

Testing implementation

https://networkx.github.io/
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 DoCPLEX Python modeling layer in conjunction with Networkx

package for graph algorithms, clique calculation:

Testing implementation

Nodelist = range(1,len(Varlist))             # Varlist contains variables in the model

G = nx.Graph()

G.add_nodes_from(Nodelist)

Q = qubomodel.get_objective_expr()

Qiter = Q.iter_quad_triplets()

while True:

try:

vi,vj,qij = next(Qiter)

if (qij != 0.0):

i1 = Vardict[vi]                           # Networkx requires hashable objects

i2 = Vardict[vj]                           # for nodes and edges

G.add_edge(i1,i2)

except StopIteration as e:

break

cliques = nx.find_cliques(G)

cliquenum = nx.graph_clique_number(G)
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 DoCPLEX Python modeling layer in conjunction with Networkx

package for graph algorithms, linearization of bilinear terms:

Testing implementation

while True:

try:

vi,vj,qij = next(Qiter)

if (qij != 0.0):

Zvarname = "zlin_" + vi.name + "_" + vj.name

Zvar = qubomodel.binary_var(Zvarname)

Zvarlist.append(Zvar)

tup = (Vardict[vi], Vardict[vj])

ZVardict[tup] = Zvar

ctname = "Linearize_" + vi.name + "_" + vj.name + "_a"

qubomodel.add_constraint(Zvarlist[Zcount] - vi <= 0, ctname)

ctname = "Linearize_" + vi.name + "_" + vj.name + "_b"

qubomodel.add_constraint(Zvarlist[Zcount] - vj <= 0, ctname)

ctname = "Linearize_" + vi.name + "_" + vj.name + "_c"

qubomodel.add_constraint(vi + vj - 1 <= Zvarlist[Zcount], ctname)

Qlinobjexpr += qij*Zvarlist[Zcount]

Zcount += 1
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 DoCPLEX Python modeling layer in conjunction with Networkx

package for graph algorithms, linearization of bilinear terms:

Testing implementation

while True:

try:

thisclique = next(cliques)                   # Networkx clique iterator

if len(thisclique) > 2:

if cliquesize == 0 or len(thisclique) == cliquesize:

cutcount += 1

if cliquelim > 0 and cutcount > cliquelim:

break

else:

add_padberg_cut(qubomodel, thisclique, Varlist, ZVardict, 

cutcount)

except StopIteration as e:

break
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Summary and Conclusions
 Spatial Branch and Bound generalizes MILP branching 

 Less developed than MILP B&B, but improving rapidly

 3 different types of nonconvex (MI)QPs

 Those that can be linearized to MILP (quadratic objective 

involves only discrete variables

 Nonconvex QPs (all continuous variables)

 Nonconvex MIQPs (some integer restrictions, but some 

continuous variables in the quadratic objective)

 Different strategies apply depending on problem type

 Ratio of continuous to integer variables in objective 

more important that overall ratio in the model

 Integrality based cuts, other integrality based reductions and 

heuristics, may not be effective

 Tightest bounds possible can favorably impact performance
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Summary and Conclusions
 Padberg’s BQP graph has additional uses beyond those in 

his original paper

 Extend his cuts beyond the 3 cliques

 Initial computational results modest

 Use in conjunction with constraints to generate additional 

cuts

 Cardinality cuts yielded significant performance boosts 

in grid overlap, maximum diversity models and dense 

QAPs

 Less dramatic but still significant as problem size 

increased

Sparse QAPs more challenging

But even then, the Padberg graph provided additional 

insight on the nature of these models
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Sources/References

 Spatial B&B deep dive:  http://ibm.co/1gtDdlj

 General optimization resources, including MINLP:

https://optimization.mccormick.northwestern.edu/index.php/Main_Page

 RLT:A Reformulation-Linearization Technique for Solving Discrete 

and Continuous Nonconvex Problems Sherali and Adams, Springer 

1999

 More details in the methods in the CPLEX global (MI)QP 

solver: http://cerc-datascience.polymtl.ca/wp-

content/uploads/2016/06/Technical-Report_DS4DM-2016-

001-1.pdf

 MILP performance tuning (including linearized MIQP):

http://www.sciencedirect.com/science/journal/18767354/18

or

http://inside.mines.edu/~anewman/MIP_practice120212.pdf 

http://t.co/juR28hj480
https://optimization.mccormick.northwestern.edu/index.php/Main_Page
http://www.sciencedirect.com/science/journal/18767354/18
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Sources/References (ctd)

 Padberg, The boolean quadric polytope: Some 

characteristics, facets and relatives, Mathematical 

Programming August 1989, Volume 45, Issue 1–3, pp 139–

172

 Junger, Kaibel, Box-inequalities for quadratic 

assignment polytopes, Mathematical Programming

October 2001, Volume 91, Issue 1, pp 175–197

https://link.springer.com/journal/10107
https://link.springer.com/journal/10107/45/1/page/1
https://link.springer.com/journal/10107
https://link.springer.com/journal/10107/91/1/page/1
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Backup
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 Padberg graph can also be used to derive stronger cuts.

 Cardinality constraint:

 Padberg graph consists of

a disjoint complete graph for

each grid column with 6 

distinct xij variables as nodes

 Any integer feasible solution

must have at least one 

complete graph with at least

2 node variables set to 1  the overlap variable in the    

corresponding edge must be 1  the sum of all the overlap 

variables must be at least 1

Example: Minimizing overlap conditions

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

x61 x62 x63 x64 x65

= 1

= 1

= 1

= 1

= 1

= 1

     6
5

1

6

1


 j i

ijx
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 Padberg graph can also be used to derive stronger cuts.

Example: Minimizing overlap conditions

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

x61 x62 x63 x64 x65

= 1

= 1

= 1

= 1

= 1

= 1

     6
5

1

6

1


 j i

ijx

x13

x23

x33

x43

x53

x63

z123

z343

z453

z353

z…

z…

z…

Padberg graph, column 3:

Same cut, no 

aggregation needed
     1

5

1

6

1

6

1


  j i ik

j

ikz
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x0

x2

x7

x1

x3

x4
x5

x6

x8

     2)( 413423124321  zzzzxxxx
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x0

x2

x7

x1

x3

x4
x5

x6

x8
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x0

x2

x7

x1

x3

x4
x5

x6

x8



© 2015 IBM Corporation100

x0

x2

x7

x1

x3

x4
x5

x6

x8

At least 2 z variables must be 1

Red edges are a maximum 

matching
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x0

x2

x7

x1

x3

x4
x5

x6

x8

At least 2 z variables must 

be 1
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x0

x2

x7

x1

x3

x4
x5

x6

x8

At least 1 z variable must 

be 1
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x0

x2

x7

x1

x3

x4
x5

x6

x8

At least 1 z variable must 

be 1
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x0

x2

x7

x1

x3

x4
x5

x6

x8

At least 1 z variable must 

be 1
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x0

x2

x7

x1

x3

x4
x5

x6

x8

At least 2 z variables must 

be 1
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x0

x2

x7

x1

x3

x4
x5

x6

x8

At least 2 z variables must 

be 1
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x2

x7

x3

x4

x6

At least 2 z variables must 

be 1
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x0

x2

x7

x1

x3

x4
x5

x6

x8

Feasible solution with all 

3 associated z variables = 

0; no cut available.
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x0

x2

x7

x1

x3

x4
x5

x6

x8
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x0

x2

x7

x1

x3

x4
x5

x6

x8
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x0

x2

x7

x1

x3

x4
x5

x6

x8



© 2015 IBM Corporation112

 QAPs with sparse Q matrices

 Unfortunately, the subgraph may not 

be smaller than the original graph

 Nodes 1 – 8 must be retained 

since they are part of a red 

edge

 Node 9 is adjacent to nodes 2 

and 4

 The QAPLIB models have Padberg

graphs that allow few, if any, nodes 

to be discarded

 If we have to enumerate all the n-

cliques in the graph, that will provide 

the optimal solution to the original 

QAP (Junger & Kaibel, 1997)

x1

x8

x2

x4

x5
x6

x7

x9

x3
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Example 1

 Nonconvex QP with all binaries and cardinality constraints

 Draw a grid with the first bilinear objective term on the 

vertical axis, second bilinear term on the horizontal axis

 Use cardinality constraints to tighten the formulation

 Another example of this can be found at

http://www.sciencedirect.com/science/journal/18767354/18

or

http://inside.mines.edu/~anewman/MIP_practice120212.pdf 

http://www.sciencedirect.com/science/journal/18767354/18
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Example 1

 Nonconvex QP with all binaries and cardinality constraints:

.

x1

Xm+1

xm

Xn

…

..

qij

 
 









m

i

n

mj

jiji

k

jjjj

jijijijijij

ijjijijijijij

xqxpthenpppIf

qqqqqpLet

qqqqqqxSuppose

kmn

1 1

30

1

    

 

 ,1 

301

54321

54321



xi

Xj =1

=5

≥30

pj (sum of 5 smallest qij column j 
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Example 1

 Nonconvex QP with all binaries and cardinality constraints

 Analogous argument for rows in the grid

.

x1

Xm+1

xm

Xn…

..

qij

 

 

 

 





m

i

n

mj

jiji

k

j

k

i

m

i

n

mj

jiji

k

iiii

xqxpr

xqxrthenrrrIf

kk

km

1 1

30

1

5

1

1 1

5

1

},max{

    
51


Xi=1

Xj

=5

≥30

ri
(Sum of 30 smallest 

qij in row i)
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Example 1

 Alternate view of formulation:  Bipartite graph

Xm+1

Xm+2

Xn

X1

X2

Xm

Xi

Xj

qij*zij

=5

>=30

j

m

i

ij

i

n

mj

iji

xz

xzxM

*5

*30*

1

1













 Arc from xi to xj implies xi =xj = 1

 Arc cost = qij

 Pick 5 xi to set to 1

 For each xi set to 1, draw arcs to at 

least 30 xj
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Tightening the Formulation

Common tactics for deriving additional cuts

 Linear or logical combinations of constraints

• Associate a graph with the model structure

Disjunctions

Solve one or more related models

Use infeasibility of model with superoptimal obj. value

• CPLEX Conflict Refiner 

Use solution objective value

• Feasibility on model with objective value constraint added

• Especially true for models with soft constraints

Source:  Klotz, Newman.  Practical Guidelines for Solving Difficult 

Mixed Integer Linear Programs
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Tightening the Formulation

 Some examples of cheating by relaxing integrality

integer ,0

34

..

 







x

x

xt

ts

tMinimize

(MIP infeasible, LP has optimal objective 3/4
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Another example of cheating: Cutting stock, known to 

have a weak compact formulation

Mill Rolls

Finished Product

Waste

Paper Machine 

Factory
MIP:
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Mill Rolls

Finished Product

Waste

Paper Mill

Cutting stock(ctd)

LP:
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conditions of the applicable license agreement governing the use of IBM software.

• References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or 

capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment 

to future product or feature availability in any way.  Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by 

you will result in any specific sales, revenue growth or other results. 

• If the text contains performance statistics or references to benchmarks, insert the following language; otherwise delete:

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment.  The actual throughput or performance that any user will 

experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage 

configuration, and the workload processed.  Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.

• If the text includes any customer examples, please confirm we have prior written approval from such customer and insert the following language; otherwise delete:

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved.  Actual environmental costs 

and performance characteristics may vary by customer.

• Please review text for proper trademark attribution of IBM products.  At first use, each product name must be the full name and include appropriate trademark symbols (e.g., IBM 

Lotus® Sametime® Unyte™).  Subsequent references can drop “IBM” but should include the proper branding (e.g., Lotus Sametime Gateway, or WebSphere Application Server).  

Please refer to http://www.ibm.com/legal/copytrade.shtml for guidance on which trademarks require the ® or ™ symbol.  Do not use abbreviations for IBM product names in your 

presentation. All product names must be used as adjectives rather than nouns.  Please list all of the trademarks that you use in your presentation as follows; delete any not included in 

your presentation. IBM, the IBM logo, Lotus, Lotus Notes, Notes, Domino, Quickr, Sametime, WebSphere, UC2,  PartnerWorld and Lotusphere are trademarks of International 

Business Machines Corporation in the United States, other countries, or both.   Unyte is a trademark of WebDialogs, Inc., in the United States, other countries, or both.

• If you reference Adobe® in the text, please mark the first use and include the following; otherwise delete:

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other 

countries.

• If you reference Java™ in the text, please mark the first use and include the following; otherwise delete:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

• If you reference Microsoft® and/or Windows® in the text, please mark the first use and include the following, as applicable; otherwise delete:

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

• If you reference Intel® and/or any of the following Intel products in the text, please mark the first use and include those that you use as follows; otherwise delete:

Intel, Intel Centrino, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States 

and other countries.

• If you reference UNIX® in the text, please mark the first use and include the following; otherwise delete:

UNIX is a registered trademark of The Open Group in the United States and other countries.

• If you reference Linux® in your presentation, please mark the first use and include the following; otherwise delete:

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of 

others.

• If the text/graphics include screenshots, no actual IBM employee names may be used (even your own), if your screenshots include fictitious company names (e.g., Renovations, Zeta 

Bank, Acme) please update and insert the following; otherwise delete: All references to [insert fictitious company name] refer to a fictitious company and are used for illustration 

purposes only.

http://www.ibm.com/legal/copytrade.shtml

