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Objective

APerformance Tuning for MILP, convex MIQP has some well
established concepts that work effectively

ASpatial B&B algorithm has some fundamental differences
that create different performance tuning challenges

AConstruct a set of performance tuning tactics for nonconvex
(MD)QP for spatial B&B algorithm

ADistinguish tactics that extend from MILP and convex
MI QP cases from t hose that

AConsider tactics specific to nonconvex (MI)QP

2 © 2015 IBM Corporation
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Outline

ANonconvex (MI)QP fundamentals

AVery brief review of MILP/convex MIQP tuning tactics

AParameters to set (or leave alone)
AParameters that extend from MILP/convex MIQP
AParameters that dondt extenc
AParameters specific to nonconvex (MI)QP

ANonconvex (M)QP model categories

AExamples

AConclusions

3 © 2015 IBM Corporation
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Nonconvex (MI)QP fundamentals

Problem definition

Minimize  c'x+ x' Qx
Subjecto Ax=D

| ¢ XxCu
Q indefinite
| 78
X1 Z
AS= : nonconvex QP; otherwise nonconvex MIQP
AEi t her way, we ||l solve it b

Integer variables may affect tuning tactics

4 © 2015 IBM Corporation
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Branch and Bound for MILP

Upper Bound

A

<PL

@ Fathomed Lower Bound

A Child node objective no better
than parent node objective

A Nodes created by branching
cumulatively contain all
feasible solutions.

5 © 2015 IBM Corporation
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Branch and Bound for Nonconvex problems

(Convex relaxation)
(branch on violated Upper Bound
- i *
non- convexity )«1 T Vs P G

Fathomed Lower Bound

A Child node objective no better
than parent node objective

A Nodes created by branching
cumulatively contain all
feasible solutions.

(node satisfies
non-convexity
requirement)

6 © 2015 IBM Corporation
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Secant approximation P
y
[ aéne— o6 a
\ o a O 9@ 9

@ 0w ao

A Finite bounds essential
A Tighter bound better

7 © 2015 IBM Corporation
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McCormick relaxation (algebraic interpretation)

W w

OWN a,6 hoN a,6

Tt Tt
w ) a) o aw aw aa 0
O ww aw aw od
O W 0 W =wWww O0w o0w oo o0
Cww O0w O6w 060

O ww | Ado daon o 6w 06

w a)o0 w Oo0w ow a6 ww 0
OCww O0w aw 0ao

0 w (w a)=0w aw o0a ww 0

O ww Ow aw o0«

r

Cww | Ebw aw aom® aw 6da

Source: https://optimization.mccormick.northwestern.edu/index.php/McCormick_envelopes
8
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McCormick relaxation (geometric interpretation)

9 © 2015 IBM Corporation
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single product x;x2 [McCormick, 1976]
X1 X2

_ UpX1 + UiX2 — Ui l2
X1X2 2 Y10 := Max
bhx1 + hxo — hhb

Usxy + hxo — hup

X1 X < le5 ‘= min
bx1 + u1xp — u1h

m Depending on the sign of g;; we only need y™ or y—.

m For simplicity, we assume we put all in the remainder.

39 (©2014 IBM corportation
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Nonconvex (M)QP fundamentals

AWebdve defined some r

11

them, and how do we branch?

el axatili o

Minimize c'x+ x' Qx
< constrains>

. . . 2 ’
Minimize2 +q; X" +¢g;XXx; +...U
Minimize2 +q,y;, +q;y; +...
Y, - Xiz =0 (SecantApproximation)%

yij - Xin =0 (McCormick Relaxation)

Do only for
nonconvex parts

of Q

< constraing> (Regular branching on IRs)

© 2015 IBM Corporation
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44

Let (X,y) be the solution of the chosen QP relaxation after
presolve/cutting. And assume x; € Z, j =1,...,p.

If Sy;; # XiX;, (X,y) is not a solution of the problem and we need

to branch.

J'..'—{—U;
)

Branch by changing the bound to # and updating all Secant and

McCormick approximations involving this bound.

Pick such an index /, choose a value 6 between and X;.

(€)2014 IBM corportation
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Review of MILP/Convex MIQP Tuning Tactics
AMILP

AExamine node log for source(s) of performance problems
Als lack of progress in best integer, best node or both?
AChoose parameters based on source(s) of problems

AAdditional insights obtained by looking at model to either
select parameters or tighten the formulation

AConvex MIQP
ASimilar to MILP, with a few exceptions and additions

A Node relaxations need not have vertex solutions,
potentially rendering some cuts ineffective

A Solve models with alternate objectives to find good
starting solutions

ALinear term only, linear approximation to quadratic
13 objective, simpler quadratic objective © 2015 18M Corporaton
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Nonconvex (MI)QP Tuning Tactics

A Distinguish among 3 Different Problem Types
AAl | guadratic objective terms hayv
A Can linearize the objective
ACPLEX does so if at least one variable is binary

AOtherwise can express general integer as linear combination
of binaries

ACan instead convexify the objective if all QP objective terms
have pairs of binaries

A MILP or convex MIQP instead of nonconvex MIQP
ANo spatial branching needed
ABut problem size is larger and/or more relaxed
A Standard MILP performance tuning tactics apply

ABut certain parameters may be more or less effective for the
linearization constraints

14 © 2015 IBM Corporation
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Nonconvex (MI)QP Tuning Tactics
A 3 Different Problem Types (ctd.)
ANonconvex QP, all continuous variables
A Spatial branching only

A Parameters that exploit integrality to improve
performance will be ineffective

AProbing, cuts, most heuristics (e.g. RINS, feasibility
pump)

AConcepts need to be extended from integrality
restrictions to more general non-convexity restrictions

AParameters that tighten bounds more likely to help
ABound strengthening already aggressive

ACan force node presolveon ( but node pr c
help)

5 ATry to provide tightest bounds possible

© 2015 IBM Corporation
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Nonconvex (MI)QP Tuning Tactics
A 3 Different Problem Types (ctd.)

ANonconvex Ml QP t hat can6t be c¢com
convexified

A Spatial branching and IR branching
ATactics depend on whether spatial or IR branching
makes the model challenging

AConsider related problems with same constraints but
guadratic objective that only requires spatial or only requires
IR branching
A Parameters that exploit integrality to improve
performance may help

AProbing and heuristics

AMost cuts
ABut not those that rely on simplex tableaus (e.g. Gomory)

16 © 2015 IBM Corporation
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Nonconvex (MI)QP Specific Parameters
A Problem type control
AQtolin parameter

A Controls whether CPLEX linearizes bilinear terms with
at least one binary variable

ATradeoff between easier MILP problem type and size of
problem

AQpmakepsd parameter
A Controls whether CPLEX convexifies the objective
A Obtain convex MIQP without increase in problem size
A But tends to yield weaker relaxation than linearization

A CPLEX default performance improved by moving from
convexification to linearization

17 © 2015 IBM Corporation
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Nonconvex (MI)QP Specific Parameters

Qtolin parameter:

Let x1*x2 =2z12

z12 <=x1

212 <=x2

712+ 1>=x1 + X2
x1,x2,z12 binary

This linearization
MILP

18

transforms the

nonconvex

MIQP into an

© 2015 IBM Corporation
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Nonconvex (MI)QP Specific Parameters

Qpmakepsd parameter to convexify quadratic objective involving pairs of
binaries:

Min X1*x2 + x2*x3

X1*X2 + X2*X3 = X1*X2 + X2*X3
+dl(x1 27T x1)+d2(x2 271 x2)+d3(x3 2 171x3)
=(d1x1l 2 +d2x2 2 + d3x32 +x1*x2 + X2*x3)
I dlx1l T d2x2 1 d3x3

A Can increase d1, d2, d3 to make quadratic terms convex
- The bigger the increase, the weaker the relaxation

- Fast heuristic to calculate good choices for d1, d2,
d3

A Change nonconvex MIQP into convex MIQP

19 © 2015 IBM Corporation
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Nonconvex (MI)QP Specific Parameters
A Cuts specific to nonconvex (MI)QP
ABQP (Boolean Quadric Polytope) cuts

A Aggressive settings more likely to be effective when
number of linear constraints is modest

ARLT (Relaxation Linearization Technique) cuts
A More likely to be effective with more linear constraints
AEither disable or use more aggressively

A Tradeoff between improved progress in best node
value, slower node throughput due to larger size of node
relaxations

20 © 2015 IBM Corporation
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Transform arbitrary QP to Box QP

Minimize c'x+.5x"Qx
AX~Db
| ¢ xCu

xi:x-ll

Minimize (c' +1'Q)xj+.5%i' Qxi
Axj~b- Al
OCXxjCu- |

Minimize ci' Xii+.5Xj QiXii Xi = xi/(u- 1)

Aiixii ~ b

Q¢xii¢1

© 2015 IBM Corporation



|||"|
i
ln
1l
[
H
7
.
-
AY

IBM Analytics

Box QP

| 88 (box-QP)

ABox-QP is interesting in itself:

Bounds 0 and 1 are w.l.0.g. (every box QP can be scaled to those bounds)

Still NP-hard

Has some academic interest [VVandenbussche and Nemhauser, 2005, Burer and

Vandenbussche, 2009, Chen and Burer, 2012]

Also some applications [More and Toraldo, 1989] (usually huge size)

A Assuming finite bounds on G (box-QP) is a valid relaxation for every non-convex

(MDQP (but additional linear constraints are removed in the relaxation process)

22 © 2015 IBM Corporation
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Box QP and Boolean Quadratic Optimization

Proposition [Burer and Letchford, 2009]

Let @ be the set where variables wrepresent the products in 0 (excluding
diagonal terms 0 ):

O {(AMQ AT R mh
@ {(hydo ool "GQ~ 08

We then have:

10 AT (@ o Bor wp ) AT (@ e Do [ )

Corollary
A BQP is the Boolean Quadratic Polytope [Padberg, 1989].

A BQP gives a valid relaxation of box-QP (but tends to be weaker as number
of linear constraints in original QP increases).

AEvery valid cut for BQP is valid for the box-QP.

23 © 2015 IBM Corporation
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BQP cuts for non-convex (M)QPs
[joint project with IBM Research (Ghnlhk and Linderoth)]

A BQP can be rewritten as
"1O AT T @)y mtp &€
) whow who © & pH €@ONO

A CPLEX has a lot of technology available to optimize over BQP
- In particular, the 07 1/2 Chvatal-Gomory cut separator finds strong cutting planes for
BQP
- When used in the context of a non-convex MIQP, we call these BQP-cuts
- By scaling and shifting, separation can always be reduced to the 0T 1 case
- After branching, rescaling using tighter local bounds leads to tighter local cuts.
- BQP arise from Box-QP but can be used to strengthen any non-convex (MI)QP

24 © 2015 IBM Corporation
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RLT cuts for non-convex (MI)QPs
ADetails

A A Reformulation-Linearization Technique for Solving Discrete
and Continuous Nonconvex Problems by Hanif D. Sherali and W.
P. Adams, Springer 1999

AKey idea: Multiply a linear constraint (ax-b) by individual (0 &)
values, then use McCormick ineqgualities in bilinear terms, update the
lower and upper bounds in the linear expressions as they get tighter
during the tree search to create locally valid cuts

ww | Ao ao aame® 6w 0606
W | Ebw o a6mMmw an oO6ad

A More likely to be effective on models with more constraints

25 © 2015 IBM Corporation
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Nonconvex (M)QP General Parameters

A Parameters that can help regardless of the category of
nonconvex (MI)QP

Almprove node throughput

AStart/Subalgorithm parameters to chose node relaxation
algorithm

A Parameters that only apply when integer branching is
present

AVariable selection parameter
AProbing
A MIP starts not currently supported
ADifficult mapping from original to transformed model

26 © 2015 IBM Corporation
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Example 1
A Nonconvex QP with all binaries and cardinality constraints:

27

Minimize g Q XgiX (x binary,g; 2 0)
i=1 j=m+l
ax=5
i=1
3 %2 30
j=m+1
Xm+1 Xi
X1
Xi Qjj
Xm

(80

© 2015 IBM Corporation
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Example 1
A Nonconvex QP with all binaries and cardinality constraints
4 . . » . 7 m n
ATo linearize or not to linearize” Minimize 3 & xqx (xbinary)
i=1 j=m+l
ax=>5
i=1
a x; 2 30
j=m+1
Minimize zao (X binary)
Z12 ¢ X1
Z12 ¢ X2

Z122 Xa+ X2-1

X1 = X2 =.5, z12 = O feasiblan thelinearizedLP relaxation

In original MIQP, x1 = X2 = .5forcesa positiveobjectivevalue

In thenonconvexQPrelaxation butnotin therelaxatiorsactually
6 |solvedby thespatialB & B solver © 2015 IBM Corporation
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Example 1

A Nonconvex QP with all binaries and cardinality constraints
ATo linearize or not to linearize?

ANode log with gtolin parameter turned off:

Nodes Cuts/
Node Left Objective IInf BestInteger BestBound ItCnt Gap

0 0 -7.12168e+08 109 -7.12168e+08 31

* 0+ O 6204.9094 -7.12168e+08 ---
* 0+ O 4967.7765 -7.12168e+08 ---
0 2 -7.12168e+08 109 4967.77/65 -7.12168e+08 31 ---

7901 5570 -6.94050e+08 0O 1403.6893 -7.12137e+08 101618 ---

7902 5571 -6.87463e+08 6 1403.6893 -7.12137e+08 101623 ---
Elapsed time = 712.68 sec. (540121.82 ticks, tree = 2402.25 MB, solutions = 267)
Nodefile size = 204.31 MB

7942 5593 infeasible 1403.6893 . 102200 ---
7950 5597 -6.87455e+08 3 1403.6893 102377  ---

29 © 2015 IBM Corporation
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Example 1

A Nonconvex QP with all binaries and cardinality constraints
ATo linearize or not to linearize?

ANode log with gtolin parameter left on at default:

Nodes Cuts/
Node Left Objective lInf BestInteger BestBound ItCnt Gap

* 0+ 0 494.8192 0.0000 100.00%
* 0+ 0 131.3468 0.0000 100.00%
0 0 0.0000 /0  131.3468 0.0000 233 100.00%

18233 12810 7.7423 178 17.0050 0.0000 2079862 100.00%
18235 12812 1.7563 141 17.0050 0.0000 2080171 100.00%
Elapsed time = 6154.42 sec. (1368022.84 ticks, tree = 930.16 MB, solutions = 13)
* 18530+13096 16.5953 0.0000 100.00%
* 18540+13106 16.3024 0.0000 100.00%

30 © 2015 IBM Corporation
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Example 1
A Nonconvex QP with all binaries and cardinality constraints
A Node log based performance tuning

ALinearization to MILP better

AProgress in the best node may be challenging with
parameter settings

ACuts and probing may not address the weakness of the
formulation involving the linearization variables
A Model only has cardinality and linearization constraints
A Zero half cuts might help
ABranching up more powerful when number of variables
dramatically exceeds rhs values of cardinality constraints
ABranching down more powerful in the reverse case

AModel well suited to local search/local improvement
31 heu rIStICS © 2015 IBM Corporation




IBM Analytics

KK
ln
1l

]
7
.

-
AY

Example 1

A Nonconvex QP with all binaries and cardinality constraints

AWell suited to local search
local improvement:

m+1

Xm+1:l Xm+2: 1

m n

Minimize g Q XgiX
i=1 j=m+l

ax=5

i=1

3 %2 30

j=m+1

(x binary)

Xmnizo=l Xmiz=0 & X,;=0

n

m+30
Xm0 =4 - - é - - aqu
X2:1 j=m+1
Xy=1
X,=1
Xs=1 m+30
Xo=1 %g=0||* Hoe |+ + 8q,
é j=m+1
X_=0

32

B0
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Example 1

A Nonconvex QP with all binaries and cardinality constraints
ANode log branch up, RINS frequency 200, solution polishing

after 30 minutes:

Nodes Cuts/

Node Left Objective lInf BestInteger BestBound ItCnt Gap
é

60 14 11.7385 251 11.9074 0.0000 16170 100.00%
70 14 11.7879 226 11.9074 0.0000 16292 100.00%
Elapsed time = 545.57 sec. (114453.69 ticks, tree = 0.53 MB, solutions = 6)
79 13 cutoff 11.9074 0.0000 16407 100.00%
84 14 1.7133 173 11.9074 0.0000 16697 100.00%
e
1708 124 cutoff 9.0886 0.0000 135562 100.00%
Elapsed time = 1696.83 sec. (240881.08 ticks, tree = 95.36 MB, solutions = 10)
1760 127 0.0008 551 9.0886 0.0000 142195 100.00%
e
* 1782+ 118 6.8981 0.0000 100.00%
1782 120 0.3247 115 6.8981 0.0000 159376 100.00%
1783 119 0.2436 560 6.8981 0.0000 159183 100.00%

Elapsed time = 4391.19 sec. (770332.08 ticks, tree = 166.33 MB, solutions = 38)

33
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Example 2
A Nonconvex QP with all continuous variables
A Default settings:
Nodes Cuts/

Node Left Objective lInf BestInteger BestBound ItCnt Gap

* 0+ O 0.3931 -7668.0051 ---
0 0 -153.3420 O 0.3931 -153.3420 9 ---
* 0+ O -6.3860 -153.3420 ---
0O O -9.5378 O -6.3860 RLT: 50 1856 49.35%
e

Slow
progress in
best node

Elapsed time = 46.85 sec. (22852.38 ticks, tree = 125.39 MB, solutions = 632)
7817 5294 -6.4361 O -6.3860 -9.0699 1546050 42.03%

é
10113 6704 -6.8908 O -6.3860 -9.0699 2081962 42.03%

Elapsed time = 67.55 sec. (32405.73 ticks, tree = 170.23 MB, solutions = 837)
10352 6877 -6.5928 O -6.3860 -7.7057 2145588 20.67%

e

99292 4408 cutoff -6.3860 -6.4377 22808661 0

103430 703 cutoff -6.3860 -6.4002 22946508 0.22%

é

MIP - Integer optimal, tolerance (0.0001/1e-06): Objective = -6.3860149815e+00

Current MIP best bound = -6.3866525512e+00 (gap = 0.00063757, 0.01%)

LSolution time = 802.48 sec. lterations = 22955491 Nodes =
104187 (44)

Try alternat
QP rel.
algorithms

0

© 2015 IBM Corporation
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Example 2
A Nonconvex QP with all continuous variables
A Bgp cut parameter set to most aggressive setting of 3:

Nodes Cuts/
Node Left Objective linf BestInteger BestBound ItCnt Gap

* 0+ O 0.3931 -7668.0051

0O O -153.3420 O 0.3931 -153.3420 9
* 0+ O -6.3860 -153.3420

0 0 -9.5378 0 -6.3860 RLT: 50 1856 49.35%
e
11809 1344 cutoff -6.3860 -6.5202 4888403 2.10%
Elapsed time = 168.14 sec. (80678.33 ticks, tree = 21.89 MB, solutions = 633)
12164 1069 cutoff -6.3860 -6.4920 4948613 1.66%
12616 778 cutoff -6.3860 -6.4664 4999328  1.26%

13413 185 cutoff -6.3860 -6.4096 5056713 0.37%
é

MIP - Integer optimal, tolerance (0.0001/1e-06): Objective = -6.3860149815e+00
Current MIP best bound = -6.3866035011e+00 (gap = 0.00058852, 0.01%)

Solution time = 174.66 sec. lterations = 5063193 Nodes =
13690 (11)

35 © 2015 IBM Corporation
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Tightening the formulation
AWhat happens when adjusting parameters is insufficient?
- Examine model, figure out how to tighten the formulation

- Start with non-convex MIQPs that linearize to MILPs, since
we can draw on knowledge from the easier MILP case

ASimplify the model if necessary

ARemove any constraints and integrality restrictions not involved in the
performance trouble

ATry to reproduce the trouble in a smaller data instance

AFind out how relaxing integrality allows you to cheat

AHow do fractional solutions in the node relaxations allow the
objective to improve?

Aln terms of the physical system being modelled, does relaxing
Integrality introduce valuable new processes at little nor no cost than
are unavailable in the MILP version of the model?

AUse fractional solutions to identify the constraints and
variables that will motivate additional cuts oo B Goportor

36
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Example: A nonconvex MIQP with a cardinality
constraint

Model description:

>0
N0

Maximize g a di*x* X
=1L =l

I,

Subjectto g % ¢k

J=1

X binary

Source: Klotz, Newman. Practical Guidelines for Solving Difficult

" Mixed Integer Linear Programs

© 2015 IBM Corporation
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Example: A nonconvex MIQP with a cardinality
constraint

Node Log with n = 28, k = 10:

Nodes Cuts/
Node Left Objective linf Best Integer Best Node ItCnt Gap

0 0 13.0405 28 13.0405 29

*0+ 0 0 5.0000 13.0405 29 160.81%

*0+ 0 0 5.6250 13.0405 29 131.83%

100 82 11.7307 25 5.6250 11.7307 129 108.55%

é

2222400329 5.6256 5 5.6250 5.6256 2371768 0.01%
MIP - Integer optimal, tolerance (0.0001/1e - 06):
Objective = 5.6250000000e+00

Solution time = 408.94 sec.

38 © 2015 IBM Corporation
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Example: A nonconvex MIQP with a cardinality
constraint

AReview the guidelines and tactics

Simplify the model if necessary

Determine how fractional solutions affect objective

Use fractional solutions to motivate additional cuts

Linear or logical combinations of constraints

Disjunctions
Solve one or more related models

Use infeasibility

Use solution objective value

39 © 2015 IBM Corporation
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Example: A nonconvex MIQP with a cardinality
constraint

Determine how fractional solutions affect objective

Simplify the model if necessary
max 3X1*x2 + 4x1*x3 + 5x2*x3

subject to Extreme point

X1+ Xx2+x3<=2

x1, X2, X3 binary p A N

MIQP optimal solution: x2 = x3 = 1; obj =5

QP optimal solution: X1 = x2=x3=2/3; _obj] =16/3

Non-vertex, fractional
We cannot tighten this formulation with linear
constraints since the integer solutions are extreme
points of the relaxation polyhedron

40 © 2015 IBM Corporation
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Example 3: A nonconvex MIQP

Solve one or more related models

Let x1*x2 = z12

z12 <=x1

712 <= X2
z12+1>=x1+x2
z12 binary

This linearization transforms the nonconvex MIQP into an
MIP

41 © 2015 IBM Corporation
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Example 3: A nonconvex MIQP

Node log with n=28, k=10 for the linearized problem:

Nodes Cuts/
Node Left Objective [Inf Best Integer Best Node ItCnt  Gap
0 0 12.8720 402 12.8720 617
*0+ O 0 -0.0000 12.8720 617
0+ O 0O 0.1250 12.8720 617
e
*85 74 0 5.0417 11.8962 2345 135.96%
é
137900 23  cutoff 5.6250 5.6333 2707056 0.15%

MIP - Integer optimal solution: Objective = 5.6250000000e+00
Solution time = 251.66 sec. Iterations = 2707079 Nodes = 137923

42
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Example 3: A nonconvex MIQP

Determine how fractional solutions arrect

max 3z12 + 4z13 + 5z23 subject to
X1+ X2+ x3<=2

z12 <=x1

z12 <=x2

z12+1>=x1+x2

z13<=x1

z13 <=x3

z13+1>=x1+x3

223 <= x2 zij=1 (=) xi =xj=1(true for MIP, LP)
223 <=x3

223 + 1 >=x2 + X3 zij<l (=) xi=0orxj=0 (true for MIP)
All variables binary

MIP optimal: z23 = x2 =x3 =1, obj =5.

LP optimal: all variables = 2/3, obj =8

43 © 2015 IBM Corporation



